
 Name: _________________________

Copyright © 2020 by Kennesaw State University

Creative Commons 4.0 Attribution Share Alike License

Last update: 2020-03-09

Paddling Around
Professor Bob Brown – Kennesaw State University

Bob.Brown@Kennesaw.edu

Class and Object
As we said earlier, Python is an object oriented language. Objects contain both code, called
methods, which define the behavior of the object, and data, called properties. Each object is
described by a class definition. In Python, class names begin with a capital letter.

The class is not the object; instead, you can think of it as a template or mold for creating objects.
Creating an object from its class definition is called instantiating an object. The object created is
called an instance of the class.

Sometimes, but not always, making an instance of an object involves executing code. That code is
called a constructor, and by convention in Python, constructors are named __init__. (That’s two
underscores.)

Inheritance

Inheritance is a key feature of true object oriented languages. That means we can create new
classes (not objects) with all the properties and methods of an existing class, and some new
properties and methods as well. The existing class from which the new class inherits is called the
parent class or superclass. For example, if there is an existing class Mammal, we can define a
new class, perhaps Dog, that inherits properties and methods from Mammal. We don’t have to
repeat them; we just add or change those properties and methods the separate Dog from the generic
Mammal.

Paddles for Our Pong Game
In game development, a sprite is something that can move around in the game space. The
PyGames library defines a generic class called Sprite. The code below creates a class called
Paddle that inherits the properties of Sprite. This class definition has its own constructor, called
__init__, and also calls the constructor of the superclass, called super().__init__, which refers to
the constructor of the parent, or super class.

 2

It is important to remember that this doesn’t create any paddles, it just provides a template for
building them later. The self keyword refers to the object being constructed. Type the code below
and save it as a file called paddle.py.
import pygame
BLACK = (0,0,0)

class Paddle(pygame.sprite.Sprite):

This class represents a paddle.
It derives from the "Sprite" class in Pygame.

 def __init__(self, color, width, height):
 # Call the parent class (Sprite) constructor
 super().__init__()

 # Pass in the color of the paddle,
 # and its x and y position, width and height.
 # Set the background color and set it to be transparent
 self.image = pygame.Surface([width, height])
 self.image.fill(BLACK)
 self.image.set_colorkey(BLACK)

 # Draw the paddle (a rectangle!)
 pygame.draw.rect(self.image, color, [0, 0, width, height])

 # Fetch the rectangle object that has the dimensions of the image.
 self.rect = self.image.get_rect()

Using the Paddle Class
Return to the code from the second class, the skeleton of our Pong game. We are going to
instantiate two paddles, one for each player, using the Paddle class we just wrote.

Just below the line that says import pygame add a new line, from paddle import Paddle

After pygame.display.set_caption("Pong") add a blank line, then the following, not indented.
paddleA = Paddle(WHITE, 10, 100)
paddleA.rect.x = 20
paddleA.rect.y = 200

paddleB = Paddle(WHITE, 10, 100)
paddleB.rect.x = 670
paddleB.rect.y = 200

This defines two white paddles named paddleA and PaddleB, 10 pixels wide and 100 pixels tall,
one 20 pixels from the left edge of the screen and one 670 pixels from the edge. They’re both 200
pixels from the top.

 3

Immediately after the code you just entered, add another blank line and the following:
This will be a list that will contain all the sprites we
intend to use in our game.
all_sprites_list = pygame.sprite.Group()

Add the paddles to the list of sprites
all_sprites_list.add(paddleA)
all_sprites_list.add(paddleB)

This defines a list of the sprites used in the game so far and adds paddleA and paddle to the list.

Under the comment line # --- Game logic should go here add a line:
 all_sprites_list.update()
It should be indented the same amount as for event in pygame.event.get() five lines up. Depending
on how you entered the first code, this should be one tab. This updates the list of sprites once on
each pass through the game’s main loop.
Finally, under pygame.draw.line(screen, WHITE, [349, 0], [349, 500], 5) add a
blank line and the following:
 #Now let's draw all the sprites in one go.
 all_sprites_list.draw(screen)

It should be indented the same as the other lines you just added, one tab.

Try running your program. If you get error messages, read them carefully and see whether you can
find this mistakes.

When everything runs, you’ll have a screen with two paddles! Close the screen with the STOP
icon near the top pf the Thonny window.

Make the Paddles Move
One of the great things about object oriented programming is that by changing a class definition
and re-running our program, we can change all the objects created from that class definition, no
matter how many there were!

We’re going to add two methods, moveUp and moveDown, to our paddles. Open paddle.py and add
the following code at the end:
 def moveUp(self, pixels):
 self.rect.y -= pixels
 #Check that you are not going too far (off the screen)
 if self.rect.y < 0:
 self.rect.y = 0

 def moveDown(self, pixels):
 self.rect.y += pixels
 #Check that you are not going too far (off the screen)
 if self.rect.y > 400:
 self.rect.y = 400

 4

Let’s take a closer look at moveUp. The things in parentheses on the first line are what’s passed to
the method. As we said, self refers to whichever paddle gets the method call. Pixels is how far to
move, and of course, we’re moving up. Since the Y coordinate of the paddle starts at the top of the
screen, we must subtract from the Y coordinate to move up. The -= operator says to subtract the
value on the right, pixels, from the value on the left, the Y coordinate, and store the result back in
the value on the left. We can’t just subtract, however; we have to be sure a player can’t move the
paddle off the top of the screen. That’s what the check for the Y coordinate being less than zero
does.

The moveDown method adds to the Y coordinate, and checks that we haven’t moved off the bottom
of the 400 pixel tall screen.

To actually use these two methods, we have to call them from the Pong program. This is a two-
player game. The left player will use the w and s keys on the keyboard to move up and down. The
right player will use the up and down arrows. Add the following code before the # --- Game logic
should go here comment, indented by one tab or four spaces, to line up with the comment itself.
 # Moving the paddles when the user uses the arrow keys (player A)
 # or "W/S" keys (player B)
 keys = pygame.key.get_pressed()
 if keys[pygame.K_w]:
 paddleA.moveUp(5)
 if keys[pygame.K_s]:
 paddleA.moveDown(5)
 if keys[pygame.K_UP]:
 paddleB.moveUp(5)
 if keys[pygame.K_DOWN]:
 paddleB.moveDown(5)

Try running your program again. Correct any errors and move the paddles!

Now that we can use the keyboard, we can make the Escape key end the game. After these two
lines:

 if event.type == pygame.QUIT: # If user clicked close

 carryOn = False # Flag that we are done so we exit

add these:
 elif event.type==pygame.KEYDOWN:
 if event.key==pygame.K_ESCAPE: #Pressing the Esc Key will quit the game
 carryOn=False

The elif should line up with the if a couple of lines up.

Run it again and test that the paddles still move and the Escape key ends the game.

	Class and Object
	Inheritance

	Paddles for Our Pong Game
	Using the Paddle Class
	Make the Paddles Move

