Come Back, Sphero

Professor Bob Brown

College of Computing and Software Engineering Kennesaw State University Bob.Brown@Kennesaw.edu

Last Time

We had a program that looked like this:

Can We Make Sphero Come Back?

Start a new program. Call it "return"

Let's Add Some LEDs

Test your Program

- Remember to aim your Sphero.
- Run the program.
- Did the Sphero go out, then return?

Let's Draw a Square

- We've made Sphero go out and back.
- Can we make it draw a square? Sure!
- We need to think of Sphero's *heading* in terms of degrees.
- To turn right, we would change Sphero's direction to 90°.
- Then what?

Let's Draw a Square

Start another new program; call it "square"

What goes in here?

Let's Draw a Square

What is the relationship between each heading and the next?

Test Your Program

- Start Sphero on a piece of tape.
- Did it return *exactly* to the tape marker?
- If not, what are some possible reasons?

Look Again at the Square Program

This is the *same thing*, – repeated four times with different headings.

"Variables" Change in Value

What is a Variable ?

- In math, a variable is a letter that stands in for some value.
- In computing, a variable is a named area of memory that holds a value.
- So, variables have a *name* and a *value*.

Numbers as Variables

- "Set" defines a variable, sets value
- Numbers:
- set heading to 0
- Whole numbers (integers): 123
- Numbers with fractions (floats): 3.14

Other Kinds of Data

- Strings:
- Booleans:
- Colors:

• We will use these data types later.

Introducing the Loop

- In computer programming, a *loop* repeats the same action, possibly with different data.
- In our program, it is Sphero's *heading* that changes each time.
- Changing a program to make it faster, more efficient, or easier to understand is called *refactoring*.
- Let's refactor the square program.

Start a New Program

- Call your program "square_loop"
- It will start and end the same as before.

A Variable for *heading*

Create a new variable.

- Name your variable heading.
- Click "Number"
- Click the check mark.

Start with *heading* 0

Add a Loop

We will go through the loop 4 times.

Add the "Roll" Block

Drag the heading variable into the heading area. Set speed and time as before.

Now Update the *heading*

What is the relationship between each heading and the next?

Now Update the *heading*

JNIVE

Test Your Program

- Does it draw a square?
- If not, what are some possible reasons?

Thought Challenge

- Could you make the same program draw a triangle?
- What would you have to change?

